Events

イベント

Hokkaido University
Center for Human Nature,
Artificial Intelligence,
and Neuroscience

CHAIN ACADEMIC SEMINAR #44

第44回 CHAIN Seminar: Timo Speith “Making AI Understandable: The Goals, Methods, and Open Challenges of Explainable AI”

日時 8月6日(月)16:30-18:00
場所 北海道大学 人文・社会科学総合教育研究棟(W棟)W309室(対面)&Zoom(オンライン)
言語 英語(質疑は日本語も可)
主催 人間知・脳・AI研究教育センター(CHAIN)
開催方法 ハイブリッド(オンラインのみ要登録)

第44回CHAINセミナーは、バイロイト大学(ドイツ)のTimo Speith先生にご講演頂きます。Timo Speith先生はCHAINの客員研究員で9月末まで滞在中です。講演は英語で行われますが、質疑応答では日本語でも質問も受け付けます(司会者が可能な範囲で通訳いたします)。

参加を希望される方は、下の登録ボタンからZOOM登録をお願いいたします。

Seminar1

Lecturer

Timo Speith
ティモ・シュパイト

Making AI Understandable: The Goals, Methods, and Open Challenges of Explainable AI

Abstract:

As AI systems become increasingly integrated into high-stakes decision-making processes, understanding their operations and outcomes is essential for satisfying societal desiderata such as trust, accountability, and fairness. This talk explores the goals, methods, and open challenges of an increasingly popular field of research dedicated to understanding AI systems: explainable AI (XAI). I will begin by motivating XAI, starting from the above-mentioned societal desiderata. Next, I will discuss the various stakeholders involved in XAI and their respective needs to understand AI systems. Furthermore, I will introduce a variety of methods for achieving explainability, focusing on saliency maps. Finally, I will address the open challenges that remain in the field. By highlighting these aspects, the talk aims to provide a comprehensive overview of XAI, emphasizing its importance in fostering societally desirable AI development and deployment.

講師紹介

Dr. Speith is a fixed-term lecturer at the chair for Philosophy, Computer Science, and Artificial Intelligence at University of Bayreuth, Germany. His research focuses on topics in AI ethics, especially on the explainability of AI (XAI).