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% Symbiotic

Interaction

An exploration of the principle of

emerging interactions in spatiotemporal
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& Summary of Achievements via Collaborative Works

Application of reBASICS to rapid adaptation  appication of ERC for a genesis of functional
of robot arm differentiation

Tsuda G - Kawai G

Evolutionary Reservoir Computers (ERC) Matsuda G
reBASICS
[Kawai et al 2022; Yamaguti et al 2019; Kameda G
lkeda G Small-WorldyKawai et al 2019] IQn=ToHENtCRY Emergence of

Networks “Maximum
Collectlve Intelligence

[Yamaguti & Ey, tlonaryand Social conditions
Tsuda, 2019]

Autistic Brains
Networking in the Brain

[Park et al., 2019]

[Kawal et al., 2019]
[Suganuma et al., 2019;Morita et al, 2020]

aI Mechanism of Functional leferentlatlon
based on
Constrained Self-Organization




Research questions on functional differentiation

a. How was functional differentiation organized in the brain?
What Is an organization mechanism? oGt |
Can it be described by conventional self-organization theories? =~ . = __

= To answer these questions, constraint is a key concept. Brodmann areas (functional map)

uuuuuu
RANGE RANGE

<05mm

Gohara 2010

Szentagothai 1992

c. How Is dynamic organization of function
temporarily generated? functional parcellation

" Glasser et al., 2016



Thermal contact of two materials with different temperatures

This Is the case of no constraint: entropy increases in time, finally an
Isothermal state occurs

T, > T,

T1 I T2

t — oo

Y Ih= T,



In a closed system, entropy Increases
according to the second law of thermodynamics.

Then, only prediction is possible for macroscopic states.



Adiabatic contraction —
Isothermal expansion —
Adiabatic expansion —
Isothermal contraction

- Constraints

P4

Carnot Cycle

In this cycle,
entropy change

0 Q should be zero.
1 2
— T
T A -
W 1 > 2
Obtained work
W Y
4 3
S, S,



Event space Complex causation

4

A

> time

If there IS no constraint,
What happens?

Entropy increases in time.

We can arbitrarily select initial conditions
at any time
because of the increase of entropy.

If a certain constraint is provided
at a certain future time,
What happens?

At each bifurcation (multi-furcation) point, events with high
probabilities do not always happen, so that rare events

as a whole series of events with low probabilities can happen with
probability 1, which is proved by principle of large deviation:
This principle assures the appearance of

low entropy events.

Entropy decreases in time.

- We cannot arbitrarily select initial
conditions; we have to find good i.c. to
‘satisfy the constraint.




Life is more than a Carnot cycle engine, which obtains work by realizing zero
entropy change, namely a reversible process, in the environment where entropy
Increases, whereas living organisms make far-from-equilibrium conditions and
produce order out of chaos, which is an irreversible process.

AS >0 present AS >0

Phase \ / In chaotic dynamical systems,
space

“entropy” increases in both future and past

- direction of time.
4 —>
7< Both prediction and past estimate are

possible: Bayesian inference holds.

v

time
_ _ N For cause A and effect X, A-X
= Implying that life can have an ability of
- , - : _ pX|A)p(4)
prediction and past estimate only in chaotic p(AlX) =
] 240 (X|A4)
environments




a) What is the difference of self-organization with constraints(SOC)
from conventional self-organization (SO)?

SO:
Macroscopic orders are generated SOC:

via Interactions of atoms and molecules at

microscopic levels
Nicolis, G., Prigogine, 1. (1977);
Haken, H.(1977)
Fixed boundary conditions!

Systems elements and subsystems are generated
via constraints acting on the system

Open boundary conditions!

Macroscopic Constraints acting on

order http://www.chem.scphys.kyoto- a whole system
I u.ac.jp/nonnonWWW/Kkitahata/
bz_1.html)
Microscopic

Functional differentiation: self-
organization of functional

RAEEE: kA3 2k, 2SEMG 10002 TakSE I
%5 A LB 2B DR ETEL G 0% RO TR (Doward) eleme ntS

Interactions

(From HonouTs Project:

MolDyn - Molecular Dynamics (from
Veselin Dikov, Niko Manopulo, Darya Popiv, llya http://www.yuchan. net/yuchan/dictionary/
Saverchenko, Levi Valgaerts) new_ikuji/brain004.html) 1



http://www.chem.scphys.kyoto-u.ac.jp/nonnonWWW/kitahata/bz_1.html
http://www.chem.scphys.kyoto-u.ac.jp/nonnonWWW/kitahata/bz_1.html
http://www.chem.scphys.kyoto-u.ac.jp/nonnonWWW/kitahata/bz_1.html
http://www.yuchan.net/yuchan/dictionary/new_ikuji/brain004.html
http://www.yuchan.net/yuchan/dictionary/new_ikuji/brain004.html
http://www.yuchan.net/yuchan/dictionary/new_ikuji/brain004.html

Our view: functional differentiation in the brain should be formulated
within the framework of self-organization with constraints, where the
functional elements (or components, or subsystems) are produced by
constraints that act on a whole system.

Tsuda, I. Prog. Theor. Phys. 1984;

Rosen, R. Life Itself , Columbia Univ. Press, 1991;

Freeman, W. J., How Brains Make Up Their Minds, A Phoenix Paperback, 1999;
Tsuda, I. Behav. Brain Sci. 2001,

Freeman, W. J., Biol. Cybern. 92, 350359 (2005).

Tsuda, I. et al. Entropy 2015;

Shimizu, H.: http://www.banokenkyujo.org/?page_id=48
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http://www.banokenkyujo.org/?page_id=48

Self-organization theory with constraints in neural networks

EX)
- C. Von der Malsburg, Kybernetik 1973

A model for the primary visual cortex: a construction of orientation sensitive cells
Constraint : a sum of the connected weights to each neuron should be constant.

- S. Amari, Bull. Math. Biol. 1980
Topographic mapping via competitive neural networks by mutual inhibitions
Constraint : winner-take-all

- T. Kohonen, Biol. Cybern. 1982
SOM can be viewed as Expectation Maximization algorithm (EM)
Constraint : maximization of expectation

- H. Haken and J. Portugali, Information Adaptation (Springer, 2015)

Pattern recognition based on pattern formation
Constraint : attention parameters 12



Assertion(Emerging Science Principle) (BIFREIE) :
In living systems, self-organization with constraints is a blueprint, thereby
"functional differentiation=a genesis of functional elements”

finEadiz =3k, 2SR I00BETohEE
£ 5n AL 2B LR TS 3 OF EBa T Tt (Cowar)

Functional differentiation/percellation and cell differentiation

follows developmental dynamical systems

13



Direct differentiation model Intervening progenitor cells model

nguron Glial progenitor

/ Y cells

7Y \ astrocyte ) _
Neuro stem [.\O'_,J—> )\Jo'%\ F Y€ Neuro stem OJ — O\-NE}‘ astrocyte

cell S cell \ S
. _ %ﬁi«
%% ojigodendrocyte V %3%2 oligodendrocyte

It should stop here ™"™"

From http://www.okano-lab.com/okanolab/stemcell

It should stop

here
The existence of neuro stem cells in the third ventricle=Neurogenesis in dentate gyrus, side subventricular
Zone, etc. =

- Treatment model of brain injury via acceleration of differentiation by stimulation in the growth factor of
progenitor cells

- Treatment model of brain injury via nerve graft with neuro stem cells stemming from fetus brains, stem
cells, and 1PS cells

= Finding the mathematical principle of neuronal differentiatfon is important.


http://www.okano-lab.com/okanolab/stemcell

Dynamical systems approach is useful for cell differentiation

A Stem cell

B Protein A

Typ 1 Protein C
Protein B

e o GOMDQ
A ~ - 3
-, RNy e
R\ N\ VR

NN \\\ \'.

Constraint: the sum of
the number of molecules
In each cell is fixed

C. Furusawa and K. Kaneko, Science, 2012

cf) Chambers et al., Nature 2007; Hayashi et al, 2008



Constrained mechanics

1. Holonomic :
- The degree of freedom of infinitesimal change equals the one of global change:
Integrable

2 . Nonholonomic :

- The former degree of freedom does not equal the latter: nonintegrable

- d’Alembert’s principle(principle of virtual work)

- deleting Lagrange multipliers=feedback control (selecting a solution following constraints
among extrema of functional)

- causal

3. Vakonomic mechanics (by V.V.Kozlov) :
- Lagrange multipliers are independent variables, depending on both initial and final states
= Final state sensitivity
- Optimal control theory (Andronov-Pontryagin)
(finding an extremum, giving constraints on variational manifold)
* noncausal

CF) The case of constrained Hamiltonian systems =for example, Dirac method



I. Tsuda, Y. Yamaguti, H.Watanabe

Step1. on Q(n) X R Entropy 2016, 18, 74
? = f(x; 1) The description of neural dynamics
t

Step2. on Q(n) X R' XW The description of the interactions between
dx

neural systems and environments
— = G )+ 6,0 )

Step 3. The description of constrained dynamics

SL = 8fOT{C + H(% — f(x,A) — G(x,t))}dt =0, C:intentional constraints
l

3.1 In the case that C is quantified, on Q(n) X R* xXWx R"

dx

yri flx, ) +G(x,t)

d :
d_l; =h(wx, %) u: Lagrange multiplier



The framework of self-organization with constraints for yielding
functional elements

8 Jo (CO(), D) + u(x %05 — () = Gy(x), )}t = 0

C(y(x), t): Intentional and Informational Constraints
cf) Pattee, J. Social Biol. Struct. 1978;
Tschacher and Haken, New Ideas in Psychol. 2007

% — f(x,1) — G(y(x),t) = 0: Dynamical Constraints

=
Note: Lagrange multipliers are a function not = Theorem 1
only of a state variable x, but also of its time- The vakonomic dynamical systems, derived

from any differentiable dynamical systems are
linearly unstable on subspace of Lagrange
multiplies.

derivatives x and time t, and their equations of
motion are derived
= Vakonomic dynamics (Kozlov, V.V. 1983) i



Optimization
with
Exponential
Discount

Particularly, applicable to the problems of { =F(2) +q
convex constraints such as

{I‘h'linimize fﬂl e =P |p(t)|?/2dt

subject to  2(t) = F(z(t)) + p(t), 2(0) = zp, r,l—lﬂ_»lg 2(t) = 2oo- (10)
Give the Lagrangian with a discount term e 7t by
Llz,p,p)=ePp|2/2 4+ uT (2 — f(z) —p).
and by the variational principle, we have
2 = F(z) + peft
{;r} = —Dp(2)"p.
Changing the variables ¢(t) = p(t)e”" leads the autonomous system on R?",
q=pg— Ds(2)Tq. (11)

least energy Consumption The eigenvalues of the Jacobian matrix for the fixed point (z.,0) for the system (11) become A;

Theorem 2

There exist positive-
measure initial conditions
to reach a given final state.

and —A; + p. Thus, when A; < 0 for all i, the point (z.,0) can become stable fixed point by taking
P < 0 satisfying +A; — g < 0 for all i. By substituting p = —j, we obtain the system (%). Therefore,
we can expect that it is possible to realize the stable control by considering infinite horizon optimal
control problem with *negative” discount.

Note that, by Legendre transformation, the system (11) can be rewritten as
P= (12)
q=—% + pq |
where the Hamiltonian H is given by

H(z,q,p) == e g /2 + p" (F(2) + q)

19



Example: Finding optimal perturbations of Bonhoeffer-van der Pol equations

3
y=—(x—a+by)/c Forger, D.B. et al, JTB 230(2004)521-32
a=0.7,b =0.8,c=3.0,r =0.342,1 = 0: subcritical Hopf bifurcation

. x3
x=c<y+x———r>+[

- Changing the state from a limit cycle to a stable fixed point by adding an external signal
- Choosing an optimal external signal (variational principle)

External signal: z(t)
boundary conditions : (x(t;),y(t;)) on limit cycle; (x(tf),y(tf)) on fixed point

L= z(t)%+ u(t) {x —C (y + x — x—: — r) —1 - Z(t)} + py (Y + (x —a + by)/c},
where C = z(t)?



dL d dL

Euler-Lagrange equations: de " atas =0 (¢ =% 9,2 1 1y)
" q; = Ux, 1y = BUP eq
* Q=L Z = [Uyl2
dy
C =X > ddit = —c(1 = x%) py+ pylc
U
"qi=y ™ d—ty = —C py+ by, lc

As (ux(O), ,uy(O)) are not given, start from appropriate values
As a conservation gquantity, Hamiltonian can be defined.

Eigenvalues of Jacobi matrix at (xsp, V¢p, 0, 0):
A1 p~—0.01103 + 0.96677i
A34~0.01103 + 0.96677i



Obtain the arrival time of Hxr Ry
trajectories at the boundary of
cylinder

/

=2 sensitive dependence on
Initial conditions on limit cycle

A

-——
——————

————————

Optimization dynamics ends

«—— While optimization dynamics works

Initial conditions on the outer limit cycle

U
= Another solvable method: exponential discount: o j dt eP*L(x,y, 2, lix, pty) = O

ti



In order to obtain global stable states, we adopted a genetic algorithm.

Evolutionary and developing dynamics via genetic algorithm

Dynamical and other _ .
constraints Dynamical Systems : {state space, dyn. rule (transition rule of states}

Family of D.S. : {D.S., bifurcation parameters}

X fb)

dt defined by b

with C (via activated proteins and/or electric activity)
defined by X
defined by C

Changing dynamical systems f(x; b) by changing parametersb to satisfy
constraintsC.

=Finding a set of Initial conditions satisfying constraints on

(subspaces) of function space.



(b), (c) Applications of the variational principle

1. Mathematical modeling of functional modules

1.1 Developed a mathematical model in terms of coupled neural oscillators

» The dynamics of each oscillator is defined by

t+1 Npc
G.hec™™
for k th oscillator in i th module Evolutionary dynamics yields functional modules
Constraint: maximum transfer entropy Y. Yamaguti and 1. Tsuda, Neural Networks, 2015; in preparation 2022
Homogeneous network Heterogeneous network
Initially, random network {

I.Tsuda, Y.Yamaguti, H. Watanabe, Proc. of ICCN;
Y. Yamaguti, | Tsuda, Neural Networks;
Y. Yamaguti, I. Tsuda, Y. Takahashi, Cogn. Neurodyn.




1.2 Functional Differentiation by Minimization of
Mutual Information between Neural Groups

(Y. Yamaguti & I. Tsuda, in preparation 2024) Maximization

 Developing functionally differentiated
structures by minimizing the amount of
mutual information between the states of
neural groups in RNN by gradient

learning. ( .)

g X Gradient of

Theorem and definition used in the model ; »
Noise = MI Loss
Theorem (Donsker-Varadhan representation). The KL (for Minimiz ation)
divergence admits the following dual representation: R N N \\
—
Dr(P|| Q) = TSS;IPRIEP[T] — log(Eq[eT]),
Ni—
Output

where the supremum is taken over all functions T such that | N p u t g 1 N p
the two expectations are finite. O
Definition (Mutual Information Neural Estimator @ O

(MINE)). Let F = {Tp}eco be the set of functions
parametrized by a neural network. MINE is defined as,

I(X;Z).. = SupE m) [Ts] — 108(E sim) - sm [€T
( % Oeg p()[el g P()®()[ ?]).




Task : Multi-frequency sinusoidal signal prediction

Outputs of trained RNN

AR = The minimization of mutual information led to the formation of
NN 1= . . .
functionally differentiated modules.

\;\/VJJJ\J

—  * During the training, the development of “functional” (correlational)

— differentiation preceded the development of structural differentiation.

Q = XiLq(ei; — af), where

Y.; eij = a;(for random connections)
<e;>=af

Correlations
Weight matrix of RNN : .
’ between Neural units The development of modularity Q
s oy | vyl [ . - correlation|c;| 1o during Iearninq
’ u : I - ‘ I ﬂ - Ostr
//
Group 1 — 10 .: o ° -2-. B 08 0.4 Qcorr
10
- EARE
£ 20l g o
25 -ll.l ] r ll 04 :
H I SN || 0.1
30 .I!=!l I.II= y
35 . | :-.. 0.0 . | | | | |
. ||
L l __ ) i fgi)ning stzgg N °00




2. Mathematical modeling for the production of spiking neurons and glial cells

- Watanabe, H., Ito, T., Tsuda, I.,
Neuroscience Research 156 (2020) 206-216.
- |. Tsuda, Y. Yanmaguti and H. Watanabe,

Entropy 2016, 18, 74:pp1-13.

Coupled dynamical systems = parameters are changed to satisfy the constraint

Xo(t+1) = fn(xg(t)) + Z wox(t) +G(t) + o
l

%@+ 1) = fi(5®) + ) wn @) +o
[

fie @) = a, tanh(a,(x — a3)) — a, tanh(as(x — ag)) + by

Constraint: maximum transmission of information of external signal



x(t+1
( ) U X(t+1) = x(t)

o x(t)

Mutual information /

site k

iteration t

The rule of state
change represented
by map

Spatio-temporal change of
Information of external signal

Time series of elementary
dynamics

initial

Stage of evolution




x(t+1)

X(t+1) = x(t)

e
SR b

B

i

) o

L

Stage of evolution

=

inal



X(t+1) = x(t)

0
Mutual information /
—
site k 0]23“56789
X, O . -
o [ N MDA o A e AT o e
site k 34567 4678 WW&#%*A’MM“ =
T *5 * j{erationt

< =

Stage of evolution inal

initial



The excitable system emerges, which
possesses characteristics of neurons

. Membrane potential
X(t+1) | =
: | KX E Threshold
“ I dl —70O t} L/—
Threshold i - time
\
Ff
I e The resulting dynamics of the network
0 x1 x2 1 is chaotic:
(1) a neuron works and processes information

In chaotic environment.

o x1, x2: initial conditions
Equilibrium state

31



Coupled dynamical systems = parameters are changed to satisfy the constraint

xo(t + 1) = fo(xo (1)) + z wox () +G() + o
l

xk(t + 1) = fk(xk(t)) + Zwklxl(t) +0o
l

fi(x) = a4 tanh(az (x — a3)) —a, tanh(as (x — a6)) + by

Constraint: maximum transmission of information of external signal

(@)
| 184
Identity map = °f N
(via strong o AP IS
coupling) X
(b)

NoWw

Excitable map |

f(x)

& A ]

T T T

1 1 1 1
mutual mformatlon
e

O N

(=]

(via weak o S
couplin X

pling) i

. o L A R i £ 33
Oscillatory map | ] £23

> 0.5 - . ’Tg %)

(whole ranges é—/—L
of coupling s 1"

strength) BELAs S L e o

Three types of dynamical systems were selected :

Success of differentiation of spiking neurons and glial cells

LA Passive
Nwewoo ~depolarization:
Glial cells-type

-/ Neuronal
. spiking:

eeten” Neuronal cells
type

Active variations:
. Neuronal or Glial cell
type

— ~ e
iteration n



3. Mathematical modeling for
Evolutionary Reservoir Computers (ERC):
Success of Learning of Separation of Temporal and Spatial Patterns

Y. Yamaguti and I. Tsuda, Chaos 2021
33




& 3.1 Investigating the Neural Specificity:
Differentiation of Neurons

—m '+ Negative correlation appears between
fazz Isp and [ temp-

f 0 * Emergence of ‘spatial neuron’ and

c L | ‘temporal neuron’

generation

Initial network auditory  After evolution
oy neu rohg\
= v
05| » o5 "

Cmeut 11 visual
| / neurons
- . B B |
nondifferentiatedst=7.~ |
neurons — 20BN
= synesthesia ? , /S

0.6 0 0.2




3.2 Changes of the Network Architecture

The feedforward connections are more strengthened than the

o | R | | feedback connections: about 5:1-3:2, depending on the evolution
N cf) Local Network in
sl TR | Rats primary visual cortex ~10:1,

S Human frontal and temporal cortices ~ 5:1-7:1

(Seeman et al 2018)

proportion of connection weight
o
w
i

decrease decrease

)

00 200 400 600 800 1000 n .
generation INCrease n

|——in - in =——in — out —— out — in ——out — out
‘ ; :

Spatial

Random networks evolved to feedforward Output

) Input
networks with weaker recurrent networks P Output
neurons | neurons

_ _ Temporal
=> Consistent with small-world network decrease Output
by Kawai et al




@ 4. reBASICS: reservoir of basal dynamics

[Kawal, IT et al., ICANN, 2022; Kawali, IT et al. Neur. Netw. 2022 ]

» Several small random neural networks are used as
modules and connected In parallel.

* Each module spontaneously produces stable time
series with diverse phases and frequencies.

* They are functionally differentiated to create an
orthogonal basis. nput

N

A |

: u(t)
5 : System y(t)
output

o

- C

o

Recursive

AL VN
| least squares

- D

o

Module output r

o
T T




@ Very large timing capacity

[Kawai et al., ICANN, 2022; Neural Networks 2022]

* reBASICS could learn the timing even for very long intervals of one minute or more.

* The total performance (timing capacity) of reBASICS was more than twenty times
larger than that of the innate training (existing approach).

* reBASICS could also learn the long-term Lorenz time series.

1.2 — eBASICS 1r .
Innate 0.8 :
1.0
0.6}
¥ 08l 0.4Ff
© 0.2}
S 5100
£ 0.6 S 80 ol
g §' 60 -0.2
g 0.4t > 40 041
£ O
£ 20 0.6
0.2 0 0.8}
reBASICS Innate
L] |
0.0 1 08 06 04 02 0 02 04 06 08 1

20 40 60 80 100 120

o




@ Correction of PD control of a robot using reBASICS

[Kawai & Asada, 2024]

A cerebellar-inspired system that
adapts motor commands to a
changing environment immediately

reBASICS

Actual position

Position Anal
ngle error
error .
Onset Q ‘ Torque Pojltl?rn ?f the
' end effector
signal Trajectory a Approx. Angle e @ Robot
generator IK arm ’

Desired I
trajectory D

controller

Actual angle

error

Without correction

correction

— Desired trajectory

- Actual trajectory




@ Rapid adaptation to the body’s physical changes

a

.I
[
.-iﬁ
1

[Kawai & Asada, 2024]

J8080808E

I
0 1 3 4 5 6 7 8 9 10

Learning epochs



What kind of chaos is adequate for information processing in the brain ?

= Establishment of chaotic information processing

K. Matsumoto and I. Tsuda, 1985, 1987, 1988; R. Shaw 1982;
J. S. Nicolis 1982, 1991: J.S.Nicolis and I. Tsuda 1985, 1989

Kullback-Leibler divergence

Lyapunov exponent

=Mutual information=The definition of time-dependent mutual information

Window

U

J

U

U

Window

EER3E Information flow

la)

<«

— BZ map,

—_———>

.
BRRDIES FX

=}
—

L arge fluctuation of =

O]

|

Information flow

(B)

Logistic map

Figure 1. Computer register: (a) indicates the noise-free case and (b) the noisy case. The
window corresponds to the width of the observation.

IEERRDIEDS T/ - *

Small fluctuation of =

Information flow

(_

—

<

dl
I(t) =1(0)e ™ 5> — = —ql -

dt
dl
T = —qadt
B LEI&EDIERIER

The same ratio of

information foss |
Without noise c With noise  ©
T aection e L i Iterat
Without noise 5 With noise
=
g \
Iteration ar - - ‘ o
— A —R =% =
Figure 2. Mutual information: (a) and ( IE.I L Ea)'l‘%iFE*E%
respectively in the BZ map. (c¢) and (d)

in the logistic map.

dl
I(t)=1(0)—,8t—>a=—,6’—>d1=

™ The same amount of
information loss
_Bdt



The case of large fluctuation of information flow

Decomposition into
bit-wise information

I = (ili i2r i3' )

Input 1

by, lp, I3

l1,12,13)

il' iz L

chaotic system 1

Ly, lp) I3

ill iz, i3,"'

chaotic system 2

il' iz,i3,

ill 1:2, i3,"'

i2' i3' i5

chaotic system 3

Mutual information can be decomposed into

bit-wise information.
K. Matsumoto and I. T, J. Phys. A 1988

FHRODERSHE D AIRE

Superposition of information contents

ANBRIERY FT—7 D
RICRFESND

Input information is
dynamically stored in the
network

ﬁ'

EMPERHF RITITIF
/), I&E%lﬁf’

Biological chaos satisfy this
property



Shannon’s channel & ¥ / ¥ D&B{E
SOURCE CHANNEL — RECEIVER
T
NAISE

Fig. 1. A communication system considered in information
theory.

iz

WEEADFARNER OGHFRFYINT—2) %

BHRDBERELEABT (AFARIIAN/ M1 X%2ETS)
Coupled chaotic dynamical systems (chaotic networks)

are viewed as Information channel
(chaos possesses internal noise)

Fig. 2. Relation between input and output in a noisy channel.

Input B does not necessarily leads to output B

!

HEBHREZEY FTLDBFEHREICEBEATES

Mutual information can be decomposed into

bit-wise information quantities

BIT-WISE MUTUAL INFORMATIGN B-Z MBDEL
PARAMETER=0.0232885
ITERATIOGN=300000

BZ map

ﬂdj—Ln—T—T— . | oy, | b Hlen
[_); BIT-WISE MUTUAL INFORMATION LOGISTIC
PARAMETER=3.9825696
ITERATIOGN=300000
N Logistic map b
1 2 3 4 5
‘T_I.—L.L‘,_g ﬂ.-!_‘j.w» L_ . _‘:—!‘ﬂ_u L
6 7 8 9 10
:ﬂ_ﬂll|l :'-‘L_l—dllu—f— R T T W wr T D e o T T NS T e SO T T S O S v

Fig. 5. Bit-wise mutual information for B-Z map (eq. 3.3) (a) and logistic map (b). The figures at the left shoulder of each box is the
time interval between input and output. The abscissa of each box represents the output binary places the rightmost being the highest

place. The real lines are calculated using eq. (2.5) and the dotted lines eq. (2.6).



Philosophy is necessary < Constraints

Q = {ERC,reBASICS} e Env. % Rapid adaptation after
P functional differentiation
We developed a new type of reservoir computers, which
rapidly adapt to given environments and solve tasks, by
realizing functional differentiation according to given constraints.

}[1 (Qli @2' Y @n) :}[2 (@11 @2! Y @n)

What is emergent information in a society consisting of interactive agents Qs ?

| personally hope, it should be conscience.
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KiRZFEE (Large Deviation Principle: Donsker-Varadhan)

X, i.i.d ,EX)) =mVX) =0c?=v>0&T 5,
Sp =20 1 Xk, a>mIZX LTP(S, > an)Z KD 7L,
REDER 2 osmas) &Y. P(S, >an) - 0(n - o)

2
~ — Sn_ 1 o = x—
HOVBRREEE L Y P(S, > ayn + mn) = P( \/%nn >q) - \/ﬁfa e~ @) dx
1

s o -&)
Lt?ﬁ\’)’C\ P(Sn>an)—>\/ﬁf\m(a_m)e dx B
INDO0ICINEL TWLK A =X =25 25DHKRERE

KIEZEEIE (Cramér’s theorem)

(X, }:i.i.d., vt e R E[etl*il] < 0 L4 5.
p(t) = E(e¥) &<, Va>E(X) =micx LT,
lim ~log P (S, > an) = —I(a), T7RDHP(S, > an) ~e M@,

n:_)og Tl(a) = sup;(at —logp(t)), lirp I(a) =00,I(a) 20=I(mM)THY

[(a)1Z T} (lower semicontinuous:Ve > 0,38 > 0,Vy, |y —x| < 8,I1(y) > 1(x) —e (F2HlEe T
bID) T, %K

DFED | log()DLIZEETH LY v RAVEBTHDI(@NPGFIETD.




Donsker-VaradhanZ®I{

EI For stochastic variables X, if stochastic distribution functions p(x), and g(x)are defined, the following
equality holds.

Dk.(qllp) = SUPT:X—>R(Eq [T(x)] —log E, [eT(x)])

AEFR) q(x)@ﬁﬂ/(/\ﬁh(x) ZRDEIICEZR D (BREDPHh(x) ZBFEADHp(x) THIS
h(x) Ep() D BT HERERMLUZEMALEDET D) ,
T EIRNF—BEREEZZ T, FTX0H (DFET D EIRE)

T p(x e T()
7&1&1»‘9{63\#5 &9 D, h(X) - fp(x)eTgx))dx = [eT(x)] p(x)

eT(0) x
RGO = S P& U Diaallp) = By [logZ3]  Diu(allh) = Ey [log &3

Di1(qllp) — Dk (qllh) = E4[T(x)] — log E,, [eT(x)]
i)
D1 (qllh) = Di(qllp) — (E4[T(x)] — log E, [e"™]) > 0
D ZIZTEEDRE D,



EI (Ichiro Tsuda 2023) When q is defined properly for p, the equality
I(a) = Dk, (qllp) holds.

ZFER)
I(a) = sup¢(at —log (1)) @(t) = E(e™1)

I(@lp(t) Ot (BT BT v > FLEH (o) - (a,—1(@) = CEZL —1(2)

X OHTEP(X)E T B, a=20 =EOeTD) py g 15 %q(X,) = p(X)eth 1Tk DX, DT,

@(t) E(etX1)

(X1€ 1)

I[(a) = supt(at — log <p(t)) = sup; (Wt — logE(etX1)>

= sup; (Eq(tXl) — long(etxl))
Donsker-Varadhanz®kIZ £ V. I(a) = Dg.(qllp)

= This leads to a reasonable interpretation that the estimator of M| with deep neural networks
guarantees a sufficient sampling over even largely deviated from an average.



@ Network size and chaos

*|In a network with a finite size N as g increases larger than 1,

asymptotically stable state = limit cycle state = chaotic state.
[Sompolinsky et al., Physical Review Letters, 1988; Doyon et al., Acta Biotheoretica, 1994]

* However, small N = low degrees of freedom & low orthogonality
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@ Motor timing learning

[Kawali et al., ICANN, 2022; NN, 2023]

* An example of the task with an interval of 1 s.

« Performance R?: the square of the correlation coefficient between
target and output

«~ 107 - :
aé)_ Training period Input / 5
o @©
=5 091 P Interval X Target
Qwn
c

-02 00 02 04 06 08 10 1.2

Time t (s)




@ The number of modules M

[Kawai et al., submitted]
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